metabelian, supersoluble, monomial
Aliases: C62.82D6, C33:14(C4:C4), (C3xC6).83D12, C3:Dic3:3Dic3, (C32xC6).8Q8, (C6xDic3).7S3, (C3xC6).17Dic6, C6.10(S3xDic3), (C32xC6).46D4, C6.7(C32:2Q8), C6.7(C32:7D4), C2.3(C33:7D4), C3:2(Dic3:Dic3), C6.28(C3:D12), C6.3(C32:4Q8), C2.3(C33:4Q8), C32:9(Dic3:C4), C32:10(C4:Dic3), C3:2(C6.Dic6), (C3xC62).12C22, (C2xC6).36S32, C6.20(C4xC3:S3), (C3xC6).52(C4xS3), (C3xC3:Dic3):3C4, C2.5(Dic3xC3:S3), (Dic3xC3xC6).4C2, C22.10(S3xC3:S3), (C2xC3:Dic3).7S3, (C6xC3:Dic3).7C2, (C3xC6).64(C3:D4), (C32xC6).43(C2xC4), (C2xC33:5C4).4C2, (C3xC6).53(C2xDic3), (C2xDic3).3(C3:S3), (C2xC6).18(C2xC3:S3), SmallGroup(432,454)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62.82D6
G = < a,b,c,d | a6=b6=1, c6=d2=a3, ab=ba, ac=ca, dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=b3c5 >
Subgroups: 984 in 220 conjugacy classes, 74 normal (26 characteristic)
C1, C2, C3, C3, C3, C4, C22, C6, C6, C6, C2xC4, C32, C32, C32, Dic3, C12, C2xC6, C2xC6, C2xC6, C4:C4, C3xC6, C3xC6, C3xC6, C2xDic3, C2xDic3, C2xC12, C33, C3xDic3, C3:Dic3, C3:Dic3, C3xC12, C62, C62, C62, Dic3:C4, C4:Dic3, C32xC6, C6xDic3, C6xDic3, C2xC3:Dic3, C2xC3:Dic3, C6xC12, C32xDic3, C3xC3:Dic3, C33:5C4, C3xC62, Dic3:Dic3, C6.Dic6, Dic3xC3xC6, C6xC3:Dic3, C2xC33:5C4, C62.82D6
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, Q8, Dic3, D6, C4:C4, C3:S3, Dic6, C4xS3, D12, C2xDic3, C3:D4, S32, C2xC3:S3, Dic3:C4, C4:Dic3, S3xDic3, C3:D12, C32:2Q8, C32:4Q8, C4xC3:S3, C32:7D4, S3xC3:S3, Dic3:Dic3, C6.Dic6, Dic3xC3:S3, C33:7D4, C33:4Q8, C62.82D6
(1 91 138 7 85 144)(2 92 139 8 86 133)(3 93 140 9 87 134)(4 94 141 10 88 135)(5 95 142 11 89 136)(6 96 143 12 90 137)(13 41 119 19 47 113)(14 42 120 20 48 114)(15 43 109 21 37 115)(16 44 110 22 38 116)(17 45 111 23 39 117)(18 46 112 24 40 118)(25 126 74 31 132 80)(26 127 75 32 121 81)(27 128 76 33 122 82)(28 129 77 34 123 83)(29 130 78 35 124 84)(30 131 79 36 125 73)(49 62 106 55 68 100)(50 63 107 56 69 101)(51 64 108 57 70 102)(52 65 97 58 71 103)(53 66 98 59 72 104)(54 67 99 60 61 105)
(1 16 93 46 142 114)(2 115 143 47 94 17)(3 18 95 48 144 116)(4 117 133 37 96 19)(5 20 85 38 134 118)(6 119 135 39 86 21)(7 22 87 40 136 120)(8 109 137 41 88 23)(9 24 89 42 138 110)(10 111 139 43 90 13)(11 14 91 44 140 112)(12 113 141 45 92 15)(25 107 128 58 78 61)(26 62 79 59 129 108)(27 97 130 60 80 63)(28 64 81 49 131 98)(29 99 132 50 82 65)(30 66 83 51 121 100)(31 101 122 52 84 67)(32 68 73 53 123 102)(33 103 124 54 74 69)(34 70 75 55 125 104)(35 105 126 56 76 71)(36 72 77 57 127 106)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 67 7 61)(2 127 8 121)(3 65 9 71)(4 125 10 131)(5 63 11 69)(6 123 12 129)(13 98 19 104)(14 74 20 80)(15 108 21 102)(16 84 22 78)(17 106 23 100)(18 82 24 76)(25 114 31 120)(26 86 32 92)(27 112 33 118)(28 96 34 90)(29 110 35 116)(30 94 36 88)(37 70 43 64)(38 130 44 124)(39 68 45 62)(40 128 46 122)(41 66 47 72)(42 126 48 132)(49 117 55 111)(50 89 56 95)(51 115 57 109)(52 87 58 93)(53 113 59 119)(54 85 60 91)(73 141 79 135)(75 139 81 133)(77 137 83 143)(97 140 103 134)(99 138 105 144)(101 136 107 142)
G:=sub<Sym(144)| (1,91,138,7,85,144)(2,92,139,8,86,133)(3,93,140,9,87,134)(4,94,141,10,88,135)(5,95,142,11,89,136)(6,96,143,12,90,137)(13,41,119,19,47,113)(14,42,120,20,48,114)(15,43,109,21,37,115)(16,44,110,22,38,116)(17,45,111,23,39,117)(18,46,112,24,40,118)(25,126,74,31,132,80)(26,127,75,32,121,81)(27,128,76,33,122,82)(28,129,77,34,123,83)(29,130,78,35,124,84)(30,131,79,36,125,73)(49,62,106,55,68,100)(50,63,107,56,69,101)(51,64,108,57,70,102)(52,65,97,58,71,103)(53,66,98,59,72,104)(54,67,99,60,61,105), (1,16,93,46,142,114)(2,115,143,47,94,17)(3,18,95,48,144,116)(4,117,133,37,96,19)(5,20,85,38,134,118)(6,119,135,39,86,21)(7,22,87,40,136,120)(8,109,137,41,88,23)(9,24,89,42,138,110)(10,111,139,43,90,13)(11,14,91,44,140,112)(12,113,141,45,92,15)(25,107,128,58,78,61)(26,62,79,59,129,108)(27,97,130,60,80,63)(28,64,81,49,131,98)(29,99,132,50,82,65)(30,66,83,51,121,100)(31,101,122,52,84,67)(32,68,73,53,123,102)(33,103,124,54,74,69)(34,70,75,55,125,104)(35,105,126,56,76,71)(36,72,77,57,127,106), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,67,7,61)(2,127,8,121)(3,65,9,71)(4,125,10,131)(5,63,11,69)(6,123,12,129)(13,98,19,104)(14,74,20,80)(15,108,21,102)(16,84,22,78)(17,106,23,100)(18,82,24,76)(25,114,31,120)(26,86,32,92)(27,112,33,118)(28,96,34,90)(29,110,35,116)(30,94,36,88)(37,70,43,64)(38,130,44,124)(39,68,45,62)(40,128,46,122)(41,66,47,72)(42,126,48,132)(49,117,55,111)(50,89,56,95)(51,115,57,109)(52,87,58,93)(53,113,59,119)(54,85,60,91)(73,141,79,135)(75,139,81,133)(77,137,83,143)(97,140,103,134)(99,138,105,144)(101,136,107,142)>;
G:=Group( (1,91,138,7,85,144)(2,92,139,8,86,133)(3,93,140,9,87,134)(4,94,141,10,88,135)(5,95,142,11,89,136)(6,96,143,12,90,137)(13,41,119,19,47,113)(14,42,120,20,48,114)(15,43,109,21,37,115)(16,44,110,22,38,116)(17,45,111,23,39,117)(18,46,112,24,40,118)(25,126,74,31,132,80)(26,127,75,32,121,81)(27,128,76,33,122,82)(28,129,77,34,123,83)(29,130,78,35,124,84)(30,131,79,36,125,73)(49,62,106,55,68,100)(50,63,107,56,69,101)(51,64,108,57,70,102)(52,65,97,58,71,103)(53,66,98,59,72,104)(54,67,99,60,61,105), (1,16,93,46,142,114)(2,115,143,47,94,17)(3,18,95,48,144,116)(4,117,133,37,96,19)(5,20,85,38,134,118)(6,119,135,39,86,21)(7,22,87,40,136,120)(8,109,137,41,88,23)(9,24,89,42,138,110)(10,111,139,43,90,13)(11,14,91,44,140,112)(12,113,141,45,92,15)(25,107,128,58,78,61)(26,62,79,59,129,108)(27,97,130,60,80,63)(28,64,81,49,131,98)(29,99,132,50,82,65)(30,66,83,51,121,100)(31,101,122,52,84,67)(32,68,73,53,123,102)(33,103,124,54,74,69)(34,70,75,55,125,104)(35,105,126,56,76,71)(36,72,77,57,127,106), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,67,7,61)(2,127,8,121)(3,65,9,71)(4,125,10,131)(5,63,11,69)(6,123,12,129)(13,98,19,104)(14,74,20,80)(15,108,21,102)(16,84,22,78)(17,106,23,100)(18,82,24,76)(25,114,31,120)(26,86,32,92)(27,112,33,118)(28,96,34,90)(29,110,35,116)(30,94,36,88)(37,70,43,64)(38,130,44,124)(39,68,45,62)(40,128,46,122)(41,66,47,72)(42,126,48,132)(49,117,55,111)(50,89,56,95)(51,115,57,109)(52,87,58,93)(53,113,59,119)(54,85,60,91)(73,141,79,135)(75,139,81,133)(77,137,83,143)(97,140,103,134)(99,138,105,144)(101,136,107,142) );
G=PermutationGroup([[(1,91,138,7,85,144),(2,92,139,8,86,133),(3,93,140,9,87,134),(4,94,141,10,88,135),(5,95,142,11,89,136),(6,96,143,12,90,137),(13,41,119,19,47,113),(14,42,120,20,48,114),(15,43,109,21,37,115),(16,44,110,22,38,116),(17,45,111,23,39,117),(18,46,112,24,40,118),(25,126,74,31,132,80),(26,127,75,32,121,81),(27,128,76,33,122,82),(28,129,77,34,123,83),(29,130,78,35,124,84),(30,131,79,36,125,73),(49,62,106,55,68,100),(50,63,107,56,69,101),(51,64,108,57,70,102),(52,65,97,58,71,103),(53,66,98,59,72,104),(54,67,99,60,61,105)], [(1,16,93,46,142,114),(2,115,143,47,94,17),(3,18,95,48,144,116),(4,117,133,37,96,19),(5,20,85,38,134,118),(6,119,135,39,86,21),(7,22,87,40,136,120),(8,109,137,41,88,23),(9,24,89,42,138,110),(10,111,139,43,90,13),(11,14,91,44,140,112),(12,113,141,45,92,15),(25,107,128,58,78,61),(26,62,79,59,129,108),(27,97,130,60,80,63),(28,64,81,49,131,98),(29,99,132,50,82,65),(30,66,83,51,121,100),(31,101,122,52,84,67),(32,68,73,53,123,102),(33,103,124,54,74,69),(34,70,75,55,125,104),(35,105,126,56,76,71),(36,72,77,57,127,106)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,67,7,61),(2,127,8,121),(3,65,9,71),(4,125,10,131),(5,63,11,69),(6,123,12,129),(13,98,19,104),(14,74,20,80),(15,108,21,102),(16,84,22,78),(17,106,23,100),(18,82,24,76),(25,114,31,120),(26,86,32,92),(27,112,33,118),(28,96,34,90),(29,110,35,116),(30,94,36,88),(37,70,43,64),(38,130,44,124),(39,68,45,62),(40,128,46,122),(41,66,47,72),(42,126,48,132),(49,117,55,111),(50,89,56,95),(51,115,57,109),(52,87,58,93),(53,113,59,119),(54,85,60,91),(73,141,79,135),(75,139,81,133),(77,137,83,143),(97,140,103,134),(99,138,105,144),(101,136,107,142)]])
66 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | ··· | 3E | 3F | 3G | 3H | 3I | 4A | 4B | 4C | 4D | 4E | 4F | 6A | ··· | 6O | 6P | ··· | 6AA | 12A | ··· | 12P | 12Q | 12R | 12S | 12T |
order | 1 | 2 | 2 | 2 | 3 | ··· | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | 6 | 18 | 18 | 54 | 54 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 | 18 | 18 | 18 | 18 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | - | - | + | - | + | + | - | + | - | |||
image | C1 | C2 | C2 | C2 | C4 | S3 | S3 | D4 | Q8 | Dic3 | D6 | Dic6 | C4xS3 | D12 | C3:D4 | S32 | S3xDic3 | C3:D12 | C32:2Q8 |
kernel | C62.82D6 | Dic3xC3xC6 | C6xC3:Dic3 | C2xC33:5C4 | C3xC3:Dic3 | C6xDic3 | C2xC3:Dic3 | C32xC6 | C32xC6 | C3:Dic3 | C62 | C3xC6 | C3xC6 | C3xC6 | C3xC6 | C2xC6 | C6 | C6 | C6 |
# reps | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 2 | 5 | 10 | 8 | 2 | 8 | 4 | 4 | 4 | 4 |
Matrix representation of C62.82D6 ►in GL6(F13)
0 | 1 | 0 | 0 | 0 | 0 |
12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 12 |
7 | 3 | 0 | 0 | 0 | 0 |
10 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 12 | 12 |
5 | 8 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 8 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 12 | 12 |
G:=sub<GL(6,GF(13))| [0,12,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,12,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[7,10,0,0,0,0,3,10,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,12,0,0,0,0,0,12],[5,0,0,0,0,0,8,8,0,0,0,0,0,0,5,8,0,0,0,0,0,8,0,0,0,0,0,0,1,12,0,0,0,0,0,12] >;
C62.82D6 in GAP, Magma, Sage, TeX
C_6^2._{82}D_6
% in TeX
G:=Group("C6^2.82D6");
// GroupNames label
G:=SmallGroup(432,454);
// by ID
G=gap.SmallGroup(432,454);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,141,64,571,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=1,c^6=d^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^3*c^5>;
// generators/relations